Package: segmenTier 0.1.2
segmenTier: Similarity-Based Segmentation of Multidimensional Signals
A dynamic programming solution to segmentation based on maximization of arbitrary similarity measures within segments. The general idea, theory and this implementation are described in Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>. In addition to the core algorithm, the package provides time-series processing and clustering functions as described in the publication. These are generally applicable where a `k-means` clustering yields meaningful results, and have been specifically developed for clustering of the Discrete Fourier Transform of periodic gene expression data (`circadian' or `yeast metabolic oscillations'). This clustering approach is outlined in the supplemental material of Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>), and here is used as a basis of segment similarity measures. Notably, the time-series processing and clustering functions can also be used as stand-alone tools, independent of segmentation, e.g., for transcriptome data already mapped to genes.
Authors:
segmenTier_0.1.2.tar.gz
segmenTier_0.1.2.zip(r-4.5)segmenTier_0.1.2.zip(r-4.4)segmenTier_0.1.2.zip(r-4.3)
segmenTier_0.1.2.tgz(r-4.4-x86_64)segmenTier_0.1.2.tgz(r-4.4-arm64)segmenTier_0.1.2.tgz(r-4.3-x86_64)segmenTier_0.1.2.tgz(r-4.3-arm64)
segmenTier_0.1.2.tar.gz(r-4.5-noble)segmenTier_0.1.2.tar.gz(r-4.4-noble)
segmenTier_0.1.2.tgz(r-4.4-emscripten)segmenTier_0.1.2.tgz(r-4.3-emscripten)
segmenTier.pdf |segmenTier.html✨
segmenTier/json (API)
# Install 'segmenTier' in R: |
install.packages('segmenTier', repos = c('https://raim.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/raim/segmentier/issues
- tsd - Transcriptome time-series from budding yeast.
Last updated 4 years agofrom:a639754d74. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win-x86_64 | OK | Oct 25 2024 |
R-4.5-linux-x86_64 | OK | Oct 25 2024 |
R-4.4-win-x86_64 | OK | Oct 25 2024 |
R-4.4-mac-x86_64 | OK | Oct 25 2024 |
R-4.4-mac-aarch64 | OK | Oct 25 2024 |
R-4.3-win-x86_64 | OK | Oct 25 2024 |
R-4.3-mac-x86_64 | OK | Oct 25 2024 |
R-4.3-mac-aarch64 | OK | Oct 25 2024 |
Exports:ashbacktracecalculateScoreclusterCor_cclusterTimeseriescolorClustersflowclusterTimeserieslog_1plotdevplotSegmentationprocessTimeseriessegmentCluster.batchsegmentClusterssetVarySettingssortClusters
Dependencies:Rcpp