
Package: segmenTier (via r-universe)
August 26, 2024

Type Package

Title Similarity-Based Segmentation of Multidimensional Signals

Version 0.1.2

Author Rainer Machne, Douglas B. Murray, Peter F. Stadler

URL https://github.com/raim/segmenTier

BugReports https://github.com/raim/segmenTier/issues

Maintainer Rainer Machne <raim@tbi.univie.ac.at>

Description A dynamic programming solution to segmentation based on
maximization of arbitrary similarity measures within segments.
The general idea, theory and this implementation are described
in Machne, Murray & Stadler (2017)
<doi:10.1038/s41598-017-12401-8>. In addition to the core
algorithm, the package provides time-series processing and
clustering functions as described in the publication. These are
generally applicable where a `k-means` clustering yields
meaningful results, and have been specifically developed for
clustering of the Discrete Fourier Transform of periodic gene
expression data (`circadian' or `yeast metabolic
oscillations'). This clustering approach is outlined in the
supplemental material of Machne & Murray (2012)
<doi:10.1371/journal.pone.0037906>), and here is used as a
basis of segment similarity measures. Notably, the time-series
processing and clustering functions can also be used as
stand-alone tools, independent of segmentation, e.g., for
transcriptome data already mapped to genes.

License GPL (>= 2)

Imports Rcpp (>= 0.12.7)

Suggests flowMerge, flowClust, flowCore, knitr, rmarkdown

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 6.1.1

1

https://github.com/raim/segmenTier
https://github.com/raim/segmenTier/issues
https://doi.org/10.1038/s41598-017-12401-8
https://doi.org/10.1371/journal.pone.0037906

2 ash

VignetteBuilder knitr

Repository https://raim.r-universe.dev

RemoteUrl https://github.com/raim/segmentier

RemoteRef HEAD

RemoteSha a639754d74898720da9b066324f490449c17a683

Contents
ash . 2
backtrace . 3
calculateScore . 3
clusterCor_c . 5
clusterTimeseries . 5
colorClusters . 7
flowclusterTimeseries . 7
logLik.kmeans . 8
log_1 . 9
myPearson . 9
plot.clustering . 10
plot.segments . 11
plot.timeseries . 11
plotdev . 12
plotSegmentation . 13
print.segments . 13
processTimeseries . 14
segmentCluster.batch . 16
segmentClusters . 18
segmenTier . 21
setVarySettings . 21
sortClusters . 22
tsd . 23

Index 24

ash asinh data transformation

Description

The asinh transformation, (ash(x) = log(x + sqrt(x^2+1))), is an alternative to log transforma-
tion that has less (compressing) effects on the extreme values (low and high values), and naturally
handles negative numbers and 0. Also see log_1.

Usage

ash(x)

backtrace 3

Arguments

x a numeric vector

backtrace Back-tracing step of the segmenTier algorithm.

Description

back-tracing step: collect clustered segments from the scoring matrix S(i,c) by back-tracing the
position j=k which delivered the maximal score at position i.

Usage

backtrace(S, K, multib, nextmax = FALSE, verb = TRUE)

Arguments

S matrix S, containing the local scores

K matrix K, containing the position k used for score maximization

multib if multiple k produce the maximal score, take either the shortest k ("max") or the
longest k ("min"); if multib is set to "skip" the next unique k will be searched

nextmax proceed backwards while score is increasing before opening a new segment

verb print messages

calculateScore segmenTier’s core dynamic programming routine in Rcpp

Description

segmenTier’s core dynamic programming routine in Rcpp

Usage

calculateScore(seq, C, score, csim, M, Mn, multi = "max")

4 calculateScore

Arguments

seq the cluster sequence (where clusters at positions k:i are considered). Note, that
unlike the R wrapper, clustering numbers here are 0-based, where 0 is the nui-
sance cluster.

C the list of clusters, including nuisance cluster ’0’, see seq

score the scoring function to be used, one of "ccor" or "icor", an apt similarity matrix
must be supplied via option csim

csim a matrix, providing either the cluster-cluster (scoring function "ccor") or the
position-cluster similarity function (scoring function "icor")

M minimal sequence length; Note, that this is not a strict cut-off but defined as an
accumulating penalty that must be "overcome" by good score

Mn minimal sequence length for nuisance cluster, Mn<M will allow shorter dis-
tances between segments

multi if multiple k are found which return the same maximal score, should the "max"
(shorter segment) or "min" (longer segment) be used? This has little effect on
real-life large data sets, since the situation will rarely occur. Default is "max".

Details

This is segmenTier’s core dynamic programming routine. It constructs the total score matrix S(i,c),
based on the passed scoring function ("icor" or "ccor"), and length penalty M. "Nuisance" cluster "0"
can have a smaller penalty Mn to allow for shorter distances between "real" segments.

Scoring function "icor" calculates the sum of similarities of data at positions k:i to cluster centers c
over all k and i. The similarities are calculated e.g., as a (Pearson) correlation between the data at
individual positions and the tested cluster c center.

Scoring function "ccor" calculates the sum of similarities between the clusters at positions k:i to
cluster c over all k and i.

Scoring function "ccls" is a special case of "ccor" and is NOT handled here, but is reflected in
the cluster similarity matrix csim. It is handled and automatically constructed in the R wrapper
segmentClusters, and merely counts the number of clusters in sequence k:i, over all k and i, that
are identical to the tested cluster c, and sub-tracts a penalty for the count of non-identical clusters.

Value

Returns the total score matrix S(i,c) and the matrix K(i,c) which stores the position k which
delivered the maximal score at position i. This is used in the back-tracing phase.

References

Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>

clusterCor_c 5

clusterCor_c Calculates position-cluster correlations for scoring function "icor".

Description

Calculates Pearson’s product-moment correlation coefficients between rows in data and cluster,
and is used to calculate the position-cluster similarity matrix for the scoring function "icor". This is
implemented in Rcpp for calculation speed, using myPearson to calculate correlations.

Usage

clusterCor_c(data, clusters)

Arguments

data original data matrix

clusters cluster centers

Value

Returns a position-cluster correlation matrix as used in scoring function "icor".

clusterTimeseries Cluster a processed time-series with k-means.

Description

Performs kmeans clustering of a time-series object tset provided by processTimeseries, and
calculates cluster-cluster and cluster-position similarity matrices as required for segmentClusters.

Usage

clusterTimeseries(tset, K = 16, iter.max = 1e+05, nstart = 100,
nui.thresh = -Inf, verb = 1)

Arguments

tset a "timeseries" object returned by processTimeseries

K the number of clusters to be calculated, ie. the argument centers of kmeans,
but here multiple clusterings can be calculated, ie. K can be an integer vector.
Note that a smaller cluster number is automatically chosen, if the data doesn’t
have more then K different values.

iter.max the maximum number of iterations allowed in kmeans

nstart number of randomized initializations of kmeans: "how many random sets should
be chosen?"

6 clusterTimeseries

nui.thresh threshold correlation of a data point to a cluster center; if below the data point
will be added to nuisance cluster 0

verb level of verbosity, 0: no output, 1: progress messages

Details

This function performs one or more time-series clustering(s) using kmeans, and the output of
processTimeseries as input. It further calculates cluster centers, cluster-cluster and cluster-
position similarity matrices (Pearson correlation) that will be used by the main function of this
package, segmentClusters, to split the cluster association sequence into segments, and assigns
each segment to the "winning" input cluster.

The argument K is an integer vector that sets the requested cluster numbers (argument centers in
kmeans). However, to avoid errors in batch use, a smaller K is chosen, if the data contains less then
K distinct values.

Nuisance Cluster: values that were removed during time-series processing, such as rows that only
contain 0 or NA values, will be assigned to the "nuisance cluster" with cluster label "0". Addi-
tionally, a minimal correlation to any cluster center can be specified, argument nui.thresh, and
positions without any correlation higher then this, will also be assigned to the "nuisance" cluster.
Resulting "nuisance segments" will not be shown in the results.

Cluster Sorting and Coloring: additionally the cluster labels in the result object will be sorted
by cluster-cluster similarity (see sortClusters) and cluster colors assigned (see colorClusters)
for convenient data inspection with the plot methods available for each data processing step (see
examples).

Note that the function, in conjunction with processTimeseries, can also be used as a stand-alone
tool for time-series clusterings, specifically implementing the strategy of clustering the Discrete
Fourier Transform of periodic time-series developed by Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>,
and further analyzed in Lehmann et al. (2013) <doi:10.1186/1471-2105-14-133>, such as transcrip-
tome data from circadian or yeast respiratory oscillation systems.

Value

Returns a list of class "clustering" comprising of a matrix of clusterings, lists of cluster centers,
cluster-cluster and cluster-position similarity matrices (Pearson correlation) used by segmentClusters,
and additional information such as a cluster sorting by similarity and cluster colors that allow to
track clusters in plots. A plot method exists that allows to plot clusters aligned to "timeseries" and
"segment" plots.

References

Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>, and Lehmann et al. (2013) <doi:10.1186/1471-
2105-14-133>

Examples

data(primseg436)
Discrete Fourier Transform of the time-series,
see ?processTimeseries for details
tset <- processTimeseries(ts=tsd, na2zero=TRUE, use.fft=TRUE,

colorClusters 7

dft.range=1:7, dc.trafo="ash", use.snr=TRUE)
... and cluster the transformed time-series
cset <- clusterTimeseries(tset)
plot methods for both returned objects allow aligned plots
par(mfcol=c(3,1))
plot(tset)
plot(cset)

colorClusters Assign colors to clusters.

Description

Takes a clustering set as returned by clusterTimeseries and assigns colors to each cluster in each
clustering along the "hue" color wheel, as in scale_colour_hue in ggplot2. If cset contains a
sorting, this sorting will be used to assign colors along the color wheel, otherwise a sorting will be
calculated first, using sortClusters.

Usage

colorClusters(cset, colf, ...)

Arguments

cset a clustering set as returned by clusterTimeseries

colf a function that generates n colors

... arguments to color function colf

Value

Returns the input "clustering" object with a list of vectors ("colors"), each providing a named vector
of colors for each cluster.

flowclusterTimeseries Cluster a processed time-series with flowClust & flowMerge.

Description

A wrapper for flowClust, clustering a time-series object tset provided by processTimeseries,
where specifically the DFT of a time-series and requested data transformation were calculated. This
is intended to work in the same way as clusterTimeseries but was so far only tested for clustering
of the final segment time-series, as previously applied to microarray data from yeast by Machne &
Murray (2012) <doi:10.1371/journal.pone.0037906> and from cyanobacteria by Lehmann et al.
(2013) <doi:10.1186/1471-2105-14-133>. It could in principle also be used for segmentation, but
that has not been extensively tested. flowClust implements a model-based clustering approach and

8 logLik.kmeans

is much slower then kmeans used in clusterTimeseries. Please see option ncpu on how to use
parallel mode, which does not work on some installations. However, model-based clustering has
the advantage of an intrinsic measure (BIC) to decide on the optimal cluster numbers. Additionally,
the clusters can be "merged" to fewer clusters at constant BIC using flowMerge.

Usage

flowclusterTimeseries(tset, ncpu = 1, K = 10, selected,
merge = FALSE, B = 500, tol = 1e-05, lambda = 1, nu = 4,
nu.est = 0, trans = 1, ...)

Arguments

tset processed time-series as provided by processTimeseries

ncpu number of cores available for parallel mode of flowClust. NOTE: parallel mode
of flowClust is often non-functional. Alternatively, you can set options(mc.cores=ncpu)
directly.

K the requested cluster numbers (vector of integers)

selected a pre-selected cluster number which is then used as a start clustering for flowMerge
(if option merge==TRUE)

merge logical indicating whether cluster merging with flowMerge should be attempted

B maximal number of EM iterations

tol tolerance for EM convergence

lambda initial Box-Cox trafo

nu degrees of freedom used for the t distribution, Inf for pure Gaussian

nu.est 0: no, 1: non-specific, 2: cluster-specific estimation of nu

trans 0: no, 1: non-specific, 2: cluster-specific estim. of lambda

... further parameters for flowClust

References

Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>

logLik.kmeans Experimental: AIC/BIC for kmeans

Description

This function is supposed to provide a log-likelihood method for kmeans results, after Neal Fultz at
https://stackoverflow.com/a/33202188 and also featured in the stackoverflow package. Note,
that the blogged version on Jan 30, 2019 adds a minus and a division by 2 compared to a linked git
version. This idea has not been reviewed, and this function has not been tested extensively; feel free
to do so and contribute your results.

https://stackoverflow.com/a/33202188
https://rdrr.io/github/nfultz/stackoverflow/src/R/logLik_kmeans.R

log_1 9

Usage

S3 method for class 'kmeans'
logLik(object, ...)

Arguments

object a kmeans result object

... unused

Details

This is an attempt to reproduce the BIC measure in model-based clustering to decide on an optimal
number of clusters. This function will be used for kmeans results objects when passed to BIC
and AIC functions from the stats package in base R, and BIC and AIC are calculated this way in
segmentClusters. It is however not used anywhere at the moment.

log_1 log transformation handling zeros by adding 1

Description

A conventional approach to handle 0 in log transformation is to simply add 1 to all data, log_1(x)
= log(x+1). Also see ash.

Usage

log_1(x)

Arguments

x a numeric vector

myPearson Pearson product-moment correlation coefficient

Description

Incremental calculation of the Pearson correlation coefficient between two vectors for calculation
within Rcpp functions clusterCor_c.

Usage

myPearson(x, y)

10 plot.clustering

Arguments

x numeric vector

y numeric vector

Details

Simply calculates Pearson’s product-moment correlation between vectors x and y.

plot.clustering Plot method for the "clustering" object.

Description

plot the clustering object returned by clusterTimeseries

Usage

S3 method for class 'clustering'
plot(x, k, sort = FALSE, xaxis, axes = 1:2,
pch = 16, ylabh = TRUE, ...)

Arguments

x a "clustering" object as returned by clusterTimeseries

k a numeric or string vector indicating the clusterings to be plotted; specifically
the column numbers or names in the matrix of clusterings in cset$clusters;
if missing all columns will be plotted and the calling code must take care of
properly assigning par(mfcol) or layout for the plot

sort if TRUE and the clustering is yet unsorted a cluster sorting will be calculated
based on "ccor" cluster-cluster similarity matrix x$Ccc; see sortClusters

xaxis optionally x-values to use as x-axis (e.g. to reflect absolute chromosomal coor-
dinates)

axes list of axes to plot, numbers as used as first argument in function axis

pch argument pch (symbol) for plot

ylabh plot "clustering" horizontally at y-axis

... additional arguments to plot, eg. to set point cex

Value

returns the input "clustering" object with (potentially new) cluster sorting and colors as in shown in
the plot

plot.segments 11

plot.segments Plot method for the "segments" object.

Description

plot the final segmentation objects returned by segmentClusters and segmentCluster.batch

Usage

S3 method for class 'segments'
plot(x, plot = c("S", "segments"), types, params,
xaxis, show.fused = FALSE, ...)

Arguments

x a segmentation object as returned by segmentClusters and segmentCluster.batch

plot string vector indicating which data should be plotted; "segments": plot segments
as arrows; "S1" plot the scoring vectors s(i,j,c for all c; "S" plot the derivative
of matrix S(i,c) for all c

types a string vector indicating segment types to plot (a subset of x$ids; defaults to
all in x$ids)

params a named vector of parameter settings used in segmentCluster.batch allows to
filter plotted segment types, e.g. params=c(S="icor") will only plot segments
where the scoring function (parameter S) "icor" was used.

xaxis optional x-values to use as x-axis (e.g. to reflect absolute chromosomal coordi-
nates)

show.fused show the fuse tag as a black x

... additional arguments forwarded to arrows, eg. to set lwd for for plot="segments",
or to matplot for plot="S"

plot.timeseries Plot method for the "timeseries" object.

Description

plot the processed time-series object returned from processTimeseries.

Usage

S3 method for class 'timeseries'
plot(x, plot = c("total", "timeseries"), xaxis,
ylabh = TRUE, ...)

12 plotdev

Arguments

x a time-series object as returned by processTimeseries

plot a string vector indicating the values to be plotted; "total": plot of the total signal,
summed over the time-points, and indicating the applied threshold low.thresh;
note that the total levels may have been transformed (e.g. by log_1 or ash) de-
pending on the arguments trafo and dc.trafo in processTimeseries; "time-
series": plot the complete time-series as a heatmap, where time is plotted bottom-
up on the y-axis and segmentation coordinates on the x-axis;

xaxis x-values to use as x-axis (e.g. to reflect absolute chromosomal coordinates)

ylabh plot y-axis title horizontally

... additional arguments to plot of total signal

plotdev Switch between plot devices.

Description

Switch between plot devices.

Usage

plotdev(file.name = "test", type = "png", width = 5, height = 5,
res = 100)

Arguments

file.name file name without suffix (.png, etc)

type plot type: png, jpeg, eps, pdf, tiff or svg

width figure width in inches

height figure height in inches

res resolution in ppi (pixels per inch), only for types png, jpeg and tiff

plotSegmentation 13

plotSegmentation Summary plot for the segmenTier pipeline.

Description

Plot all objects from the segmentation pipeline, i.e. the processed time-series, the clustering, the
internal scoring matrices and the final segments.

Usage

plotSegmentation(tset, cset, sset, split = FALSE, plot.matrix = FALSE,
mai = c(0.01, 2, 0.01, 0.01), ...)

Arguments

tset a time-series object as returned by processTimeseries

cset a clusterings object as returned by clusterTimeseries

sset a segmentation object as returned by segmentClusters and segmentCluster.batch

split split segment plots by clustering plots

plot.matrix include the internal scoring matrices in the plot

mai margins of individual plots, see par

... further arguments to plot.clustering (cset) and plot.segments (sset). Note:
these may conflict and cause errors, but eg. a combination of cex=0.5, lwd=3
works, affecting cluster point size and segment line width, respectively.

print.segments Print method for segmentation result from segmentClusters.

Description

Print method for segmentation result from segmentClusters.

Usage

S3 method for class 'segments'
print(x, ...)

Arguments

x result object returned by function segmentClusters

... further argument to print.data.frame

14 processTimeseries

processTimeseries Process a time-series for clustering and segmentation.

Description

Prepares a time-series (time points in columns) for subsequent clustering, and performs requested
data transformations, including a Discrete Fourier Transform (DFT) of the time-series, as direct
input for the clustering wrapper clusterTimeseries. When used for segmentation the row order
reflects the order of the data points along which segmentation will occur. The function can also be
used as a stand-alone function equipped especially for analysis of oscillatory time-series, includ-
ing calculation of phases and p-values for all DFT components, and can also be used for Fourier
Analysis and subsequent clustering without segmentation.

Usage

processTimeseries(ts, na2zero = FALSE, trafo = "raw",
use.fft = FALSE, dc.trafo = "raw", dft.range, perm = 0,
use.snr = FALSE, lambda = 1, low.thresh = -Inf, smooth.space = 1,
smooth.time = 1, circular.time = FALSE, verb = 0)

Arguments

ts a time-series as a matrix, where columns are the time points and rows are ordered
measurements, e.g., genomic positions for transcriptome data

na2zero interpret NA values as 0

trafo prior data transformation, pass any function name, e.g., "log", or the package
functions "ash" (asinh: ash(x) = log(x + sqrt(x^2+1))) or "log_1" (log(ts+1))

use.fft use the Discrete Fourier Transform of the data

dc.trafo data transformation for the first (DC) component of the DFT, pass any func-
tion name, e.g., "log", or the package functions "ash" (asinh: ash(x) = log(x +
sqrt(x^2+1))) or "log_1" (log(x+1)).

dft.range a vector of integers, giving the components of the Discrete Fourier Transform
to be used where 1 is the first component (DC) corresponding to the total signal
(sum over all time points), and 2:n are the higher components corresponding to
2:n full cycles in the data

perm number of permutations of the data set, to obtain p-values for the oscillation

use.snr use a scaled amplitude, where each component of the Discrete Fourier Trans-
form is divided by the mean of all other components (without the first or DC
component), a normalization that can be interpreted to reflect a signal-to-noise
ratio (SNR)

lambda parameter lambda for Box-Cox transformation of DFT amplitudes (experimen-
tal; not tested)

low.thresh use this threshold to cut-off data, which will be added to the absent/nuisance
cluster later

processTimeseries 15

smooth.space integer, if set a moving average is calculated for each time-point between adja-
cent data points using stats package’s smooth with option span=smooth.space

smooth.time integer, if set the time-series will be smoothed using stats package’s filter to
calculate a moving average with span smooth.time and smoothEnds to extrap-
olate smoothed first and last time-points (again using span smooth.time)

circular.time logical value indicating whether time can be treated as circular in smoothing via
option smooth.time

verb level of verbosity, 0: no output, 1: progress messages

Details

This function exemplifies the processing of an oscillatory transcriptome time-series data as used
in the establishment of this algorithm and the demo segment_data. As suggested by Machne &
Murray (PLoS ONE 2012) and Lehmann et al. (BMC Bioinformatics 2014) a Discrete Fourier
Transform of time-series data allows to cluster time-series by their change pattern.

Note that NA values are here interpreted as 0. Please take care of NA values yourself, if you do not
want this behavior.

Rows consisting only of 0 (or NA) values, or with a total signal (sum over all time points) below the
value passed in argument low.thresh, are detected, result in NA values in the transformed data,
and will be assigned to the "nuisance" cluster in clusterTimeseries.

Discrete Fourier Transform (DFT): if requested (option use.fft=TRUE), a DFT will be applied
using base R’s mvfft function and reporting all or only requested (option dft.range) DFT com-
ponents, where the first, or DC ("direct current") component, equals the total signal (sum over all
points) and other components are numbered 1:n, reflecting the number of full cycles in the time-
series. Values are reported as complex numbers, from which both amplitude and phase can be
calculated. All returned DFT components will be used by clusterTimeseries.

Additional Transformations: data can be transformed prior to DFT (options trafo, smooth.time,
smooth.space), or after DFT (options use.snr and dc.trafo). It is recommended to use the
amplitude scaling (a signal-to-noise ratio transformation, see option documentation). The separate
transformation of the DC component allows to de-emphasize the total signal in subsequent clus-
tering & segmentation. Additionally, but not tested in the context of segmentation, a Box-Cox
transformation of the DFT can be performed (option lambda). This transformation proofed useful
in DFT-based clustering with the model-based clustering algorithm in package flowClust, and is
available here for further tests with k-means clustering.

Phase, Amplitude and Permutation Analysis: this time-series processing and subsequent clustering
can also be used without segmentation, eg. for conventional microarray data or RNA-seq data
already mapped to genes. The option perm allows to perform a permutation test (perm times) and
adds a matrix of empirical p-values for all DFT components to the results object, ie. the fraction
of perm where amplitude was higher then the amplitude of the randomized time-series. Phases and
amplitudes can be derived from the complex numbers in matrix "dft" of the result object.

Value

Returns a list of class "timeseries" which comprises of the transformed time-series and additional
information, such as the total signal, and positions of rows with only NA/0 values. Note that NA
values are interpreted as 0.

16 segmentCluster.batch

References

Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>, and Lehmann et al. (2013) <doi:10.1186/1471-
2105-14-133>

Examples

data(primseg436)
The input data is a matrix with time points in columns
and a 1D order, here 7624 genome positions, is reflected in rows,
if the time-series should be segmented.
nrow(tsd)
Time-series processing prepares the data for clustering,
the example data is periodic, and we will cluster its Discrete Fourier
Transform (DFT) rather then the original data. Specifically we will
only use components 1 to 7 of the DFT (dft.range) and also apply
a signal/noise ratio normalization, where each component is
divided by the mean of all other components. To de-emphasize
total levels the first component (DC for "direct current") of the
DFT will be separately arcsinh transformed. This peculiar combination
proofed best for our data:
tset <- processTimeseries(ts=tsd, na2zero=TRUE, use.fft=TRUE,

dft.range=1:7, dc.trafo="ash", use.snr=TRUE)
a plot method exists for the returned time-series class:
par(mfcol=c(2,1))
plot(tset)

segmentCluster.batch Batch wrapper for segmentClusters.

Description

A high-level wrapper for multiple runs of segmentation by segmentClusters for multiple cluster-
ings and/or multiple segmentation parameters. It additionally allows to tag adjacent segments to be
potentially fused due to similarity of their clusters.

Usage

segmentCluster.batch(cset, varySettings = setVarySettings(),
fuse.threshold = 0.2, rm.nui = TRUE, type.name, short.name = TRUE,
id, save.matrix = FALSE, verb = 1)

Arguments

cset a clustering set as returned by clusterTimeseries

varySettings list of settings where each entry can be a vector; the function will construct a ma-
trix of all possible combinations of parameter values in this list, call segmentClusters
for each, and report a matrix of segments where the segment ‘type’ is con-
structed from the varied parameters; see option short.name. A varySettings list
with all required (default) parameters can be obtained via function setVarySettings.

segmentCluster.batch 17

fuse.threshold if adjacent segments are associated with clusters the centers of which have a
Pearson correlation >fuse.threshold the field "fuse" will be set to 1 for the
second segments (top-to-bottom as reported)

rm.nui remove nuisance cluster segments from final results

type.name vector of strings selecting the parameters which will be used as segment types.
Note, that all parameters that are actually varied will be automatically added (if
missing). The list can include parameters from time-series processing found in
the "clustering" object cset as cset$tids.

short.name default type name construction; if TRUE (default) parameters that are not varied
will not be part of the segment type and ID. This argument has no effect if
argument type.name is set.

id if set, the default segment IDs, constructed from numbered segment types, are
replaced by this

save.matrix store the total score matrix S(i,c) and the backtracing matrix K(i,c); use-
ful in testing stage or for debugging or illustration of the algorithm; TODO:
save.matrix is currently not implemented, since batch function returns a matrix
only

verb level of verbosity, 0: no output, 1: progress messages

Details

This is a high-level wrapper for segmentClusters which allows segmentation over multiple clus-
terings as provided by the function clusterTimeseries and over multiple segmentation parame-
ters. Each parameter in the list varySettings can be a vector and ALL combinations of the passed
parameter values will be used for one run of segmentClusters. The resulting segment table, list
item "segments" of the returned object, is a data.frame with additional columns "ID" and "type",
automatically generated strings indicating the used parameters (each "type" reflects one parameter
set), and "colors", indicating the automatically generated color of the assigned cluster label.

Value

Returns an object of class "segments", just as its base function segmentClusters, but the main
segment table, list item "segments", is a data.frame with additional columns "ID" and "type",
automatically generated strings indicating the used parameters (each "type" reflects one parameter
set), and "colors", indicating the automatically generated color of the assigned cluster label.

Examples

load example data, an RNA-seq time-series data from a short genomic
region of budding yeast
data(primseg436)

1) Fourier-transform time series:
tset <- processTimeseries(ts=tsd, na2zero=TRUE, use.fft=TRUE,

dft.range=1:7, dc.trafo="ash", use.snr=TRUE)

2) cluster time-series several times into K=12 clusters:
cset <- clusterTimeseries(tset, K=c(12,12,12))

18 segmentClusters

3) choose parameter ranges, here only E is varied
vary <- setVarySettings(M=100, E=c(1,3), nui=3, S="icor", Mn=20)

4) ... segment ALL using the batch function:
Not run: ## NOTE: takes too long for CRAN example timing restrictions
segments <- segmentCluster.batch(cset=cset, varySettings=vary)

5) inspect results:
print(segments)
plotSegmentation(tset, cset, segments)

6) and get segment border table. Note that the table has
additional columns "ID" and "type", indicating the used parameters,
and "color" providing the color of the cluster the segment was
assigned to. This allows to track segments in the inspection plots.
sgtable <- segments$segments

End(Not run)

segmentClusters Run the segmenTier algorithm.

Description

segmenTier’s main wrapper interface, calculates segments from a clustering sequence. This will run
the segmentation algorithm once for the indicated parameters. The function segmentCluster.batch
allows for multiple runs over different parameters or input-clusterings.

Usage

segmentClusters(seq, k = 1, csim, E = 1, S = "ccor", M = 175,
Mn = 20, a = -2, nui = 1, nextmax = TRUE, multi = "max",
multib = "max", rm.nui = TRUE, save.matrix = FALSE, verb = 1)

Arguments

seq Either an integer vector of cluster labels, or a structure of class ’clustering’ as
returned by clusterTimeseries. The only strict requirement for the first option
is that nuisance clusters (which will be treated specially during the dynamic
programming routine) have to be ’0’ (zero).

k if argument seq is of class ’clustering’ the kth clustering will be used; defaults
to 1

csim The cluster-cluster or position-cluster similarity matrix for scoring functions
"ccor" and "icor" (option S), respectively. If seq is of class ’clustering’ csim
is optional and will override the similarity matrices in seq. If argument seq
is a simple vector of cluster labels and the scoring function is "icor" or "ccor",

segmentClusters 19

an appropriate matrix csim MUST be provided. Finally, for scoring function
"ccls" the argument csim will be ignored and the matrix is instead automatically
constructed from argument a, and using argument nui for the nuisance cluster.

E exponent to scale similarity matrices

S the scoring function to be used: "ccor", "icor" or "ccls"

M segment length penalty. Note, that this is not a strict cut-off but defined as a
penalty that must be "overcome" by good score.

Mn segment length penalty for nuisance cluster. Mn<M will allow shorter distances
between "real" segments; only used in scoring functions "ccor" and "icor"

a a cluster "dissimilarity" only used for pure cluster-based scoring w/o cluster
similarity measures in scoring function "ccls".

nui the similarity score to be used for nuisance clusters in the cluster similarity ma-
trices

nextmax go backwards while score is increasing before opening a new segment, default
is TRUE

multi handling of multiple k with max. score in forward phase, either "min" (default)
or "max"

multib handling of multiple k with max. score in back-trace phase, either "min" (de-
fault), "max" or "skip"

rm.nui remove nuisance cluster segments from final results

save.matrix store the total score matrix S(i,c) and the backtracing matrix K(i,c); useful
in testing stage or for debugging or illustration of the algorithm;

verb level of verbosity, 0: no output, 1: progress messages

Details

This is the main R wrapper function for the ‘segmenTier’ segmentation algorithm. It takes an or-
dered sequence of cluster labels and returns segments of consistent clusterings, where cluster-cluster
or cluster-position similarities are maximal. Its main input (argument seq) is either a "clustering"
object returned by clusterTimeseries (scenario I), or an integer vector of cluster labels (scenario
II) or. The function then runs the dynamic programming algorithm (calculateScore) for a se-
lected scoring function and an according cluster similarity matrix, followed by the back-tracing
step (backtrace) to find segment borders.

The main result, list item "segments" of the returned object, is a 3-column matrix, where column
1 is the cluster assignment and columns 2 and 3 are start and end indices of the segments. For the
batch function segmentCluster.batch, the "segments" item is a data.frame contain additional
information, see ?segmentCluster.batch.

As shown in the publication, the parameters M, E and nui have the strongest impact on resulting
segment borders. Other parameters can be fine-tuned but had little impact on our test data set.

In the default and tested scenario I, when the input is an object of class "clustering" produced by
clusterTimeseries, the cluster-cluster and cluster-position similarity matrices are already pro-
vided by this object.

In the second scenario II for custom use, argument seq can be a simple clustering vector, where a
nuisance cluster must be indicated by cluster label "0" (zero). The cluster-cluster or cluster-position

20 segmentClusters

similarities MUST be provided (argument csim) for scoring functions "ccor" and "icor", respec-
tively. For the simplest scoring function "ccls", a uniform cluster similarity matrix is constructed
from arguments a and nui, with cluster self-similarities of 1, "dissimilarities" between different
clusters using argument a<0, and nuisance cluster self-similarity of -a.

The function returns a list (class "segments") comprising of the main result (list item "segments"),
and "warnings" from the dynamic programming and backtracing phases, the used similarity ma-
trix csim, extended by the nuisance cluster; and optionally (see option save.matrix) the scoring
vectors S1(i,c), the total score matrix S(i,c) and the backtracing matrix K(i,c) for analysis of
algorithm performance for novel data sets. Additional convenience data is reported, such as cluster
colors and sortings if argument seq was of class ’clustering’. These allow for convenient inspection
of all data processing steps with the plot methods. A plot method exists that allows to plot segments
aligned to "timeseries" and "clustering" plots.

Value

Returns a list (class "segments") containing the main result (list item "segments"), and additional
information (see ‘Details’). A plot method exists that allows to plot clusters aligned to time-series
and segmentation plots.

References

Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>

Examples

load example data, an RNA-seq time-series data from a short genomic region
of budding yeast
data(primseg436)

1) Fourier-transform time series:
NOTE: reducing official example data set to stay within
CRAN example timing restrictions with segmentation below
tset <- processTimeseries(ts=tsd[2500:6500,], na2zero=TRUE, use.fft=TRUE,

dft.range=1:7, dc.trafo="ash", use.snr=TRUE)

2) cluster time-series into K=12 clusters:
cset <- clusterTimeseries(tset, K=12)

3) ... segment it; this takes a few seconds:
segments <- segmentClusters(seq=cset, M=100, E=2, nui=3, S="icor")

4) inspect results:
print(segments)
plotSegmentation(tset, cset, segments, cex=.5, lwd=3)

5) and get segment border table for further processing:
sgtable <- segments$segments

segmenTier 21

segmenTier segmenTier : cluster-based segmentation from a sequential clustering

Description

segmenTier : cluster-based segmentation from a sequential clustering

Dependencies

The package strictly depends only on Rcpp. All other dependencies are usually present in a basic
installation (stats, graphics, grDevices)).

Author(s)

Rainer Machne <raim@tbi.univie.ac.at>, Douglas B. Murray, Peter F. Stadler <studla@bioinf.uni-leipzig.de>

References

Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>, Machne & Murray (2012)
<doi:10.1371/journal.pone.0037906>, and Lehmann et al. (2013) <doi:10.1186/1471-2105-14-
133>

setVarySettings Parameters for segmentCluster.batch.

Description

Generates the parameter list (varySettings) for segmentCluster.batch, using defaults for all
parameters not passed.

Usage

setVarySettings(E = c(1, 3), S = "ccor", M = 100, Mn = 100,
a = -2, nui = c(1, 3), nextmax = TRUE, multi = "max",
multib = "max")

Arguments

E exponent to scale similarity matrices

S the scoring function to be used: "ccor", "icor" or "ccls"

M segment length penalty. Note, that this is not a strict cut-off but defined as a
penalty that must be "overcome" by good score.

Mn segment length penalty for nuisance cluster. Mn<M will allow shorter distances
between "real" segments; only used in scoring functions "ccor" and "icor"

22 sortClusters

a a cluster "dissimilarity" only used for pure cluster-based scoring w/o cluster
similarity measures in scoring function "ccls".

nui the similarity score to be used for nuisance clusters in the cluster similarity ma-
trices

nextmax go backwards while score is increasing before opening a new segment, default
is TRUE

multi handling of multiple k with max. score in forward phase, either "min" (default)
or "max"

multib handling of multiple k with max. score in back-trace phase, either "min" (de-
fault), "max" or "skip"

Value

Returns a parameter settings structure that can be used in the batch function segmentCluster.batch.

sortClusters Sort clusters by similarity.

Description

Takes a "clustering" object as returned by clusterTimeseries and uses the cluster-cluster simi-
larity matrix, item Ccc, to sort clusters by their similarity, starting with the cluster labeled ‘1’; the
next cluster is the first cluster (lowest cluster label) with the highest similarity to cluster ‘1’, and
proceeding from there. The final sorting is added as item "sorting" to the cset object and returned.
This sorting is subsequently used to select cluster colors and in the plot method. This simply allows
for more informative plots of the clustering underlying a segmentation but has no consequence on
segmentation itself.

Usage

sortClusters(cset, sort = TRUE, verb = 0)

Arguments

cset a clustering set as returned by clusterTimeseries

sort if set to FALSE the clusters will be sorted merely numerically

verb level of verbosity, 0: no output, 1: progress messages

Value

Returns the input "clustering" object with a list of vectors (named "sorting"), each providing a
similarity-based sorting of cluster labels.

tsd 23

tsd Transcriptome time-series from budding yeast.

Description

Transcriptome time-series data from a region encompassing four genes and a regulatory upstream
non-coding RNA in budding yeast. The data set is described in more detail in the publication
Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>.

Index

AIC, 9
arrows, 11
ash, 2, 9, 12

backtrace, 3, 19
BIC, 9

calculateScore, 3, 19
clusterCor_c, 5, 9
clusterTimeseries, 5, 7, 8, 10, 13–19, 22
colorClusters, 6, 7

data.frame, 17, 19

filter, 15
flowClust, 7, 8
flowclusterTimeseries, 7
flowMerge, 7, 8

kmeans, 5, 6, 8, 9

log_1, 2, 9, 12
logLik.kmeans, 8

matplot, 11
mvfft, 15
myPearson, 5, 9

plot.clustering, 10, 13
plot.segments, 11, 13
plot.timeseries, 11
plotdev, 12
plotSegmentation, 13
print.segments, 13
processTimeseries, 5–8, 11–13, 14

segmentCluster.batch, 11, 13, 16, 18, 19,
21, 22

segmentClusters, 4–6, 9, 11, 13, 16, 17, 18
segmenTier, 4, 21
segmenTier-package (segmenTier), 21

setVarySettings, 16, 21
smooth, 15
smoothEnds, 15
sortClusters, 6, 7, 10, 22

tsd, 23

24

	ash
	backtrace
	calculateScore
	clusterCor_c
	clusterTimeseries
	colorClusters
	flowclusterTimeseries
	logLik.kmeans
	log_1
	myPearson
	plot.clustering
	plot.segments
	plot.timeseries
	plotdev
	plotSegmentation
	print.segments
	processTimeseries
	segmentCluster.batch
	segmentClusters
	segmenTier
	setVarySettings
	sortClusters
	tsd
	Index

