
Package: dpseg (via r-universe)
October 18, 2024

Title Piecewise Linear Segmentation by Dynamic Programming

Version 0.1.3

Maintainer Rainer Machne <machne@hhu.de>

BugReports https://gitlab.com/raim/dpseg/-/issues

Description Piecewise linear segmentation of ordered data by a dynamic
programming algorithm. The algorithm was developed for time
series data, e.g. growth curves, and for genome-wide read-count
data from next generation sequencing, but is broadly
applicable. Generic implementations of dynamic programming
routines allow to scan for optimal segmentation parameters and
test custom segmentation criteria (``scoring functions'').

Depends R (>= 3.0.0)

Imports Rcpp (>= 0.12.18)

Suggests markdown, knitr, htmltools, RcppDynProg, microbenchmark,
ggplot2

LinkingTo Rcpp

URL https://gitlab.com/raim/dpseg/

License GPL (>= 2)

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.2

Repository https://raim.r-universe.dev

RemoteUrl https://gitlab.com/raim/dpseg

RemoteRef HEAD

RemoteSha a49f01f6f6fe2148938f967e12dcfc45eb9f54e0

1

https://gitlab.com/raim/dpseg/-/issues
https://gitlab.com/raim/dpseg/

2 addLm

Contents

addLm . 2
backtrace_r . 3
dpseg . 4
dpseg_old . 6
estimateP . 8
movie . 9
oddata . 10
plot.dpseg . 11
predict.dpseg . 11
print.dpseg . 12
scanP . 12
sgtable . 13

Index 15

addLm Adds linear regression data to dpseg results or a table of segment
borders.

Description

addLm takes a segment table (with start/end columns) or a result object from code dpseg, calls
base R function lm for each segment, and adds slope, intercept, r2 and variance of residuals to the
segment table. This data is required for plot and predict method, eg. when dpseg was called with a
pre-calculated scoring matrix, or alternative scoring functions or recursion.

Usage

addLm(dpseg, x, y)

Arguments

dpseg result object (class "dpseg") returned by function dpseg or simply a segment
table with "start" and "end" indices

x original x-data used

y original y-data used

Value

Returns the input dpseg object or segment table, but with original xy data and fit results from a
linear regression with base R (lm(y~x)) added to the results and linear regression coefficient and
goodness of fit meaurs in the main segments table.

backtrace_r 3

Examples

1: run dpseg with store.matrix=TRUE to allow re-rung
segs <- dpseg(x=oddata$Time, y=log(oddata$A3), store.matrix=TRUE)

2: run dpseg with score function matrix input
segr <- dpseg(y=segs$SCR, P=0.0001, verb=1)

NOTE: only data indices i and j are provided in results
print(segr)

3: add original data and linear regression for segments
NOTE: now also plot and predict methods work
segr <- addLm(segr, x=oddata$Time, y=log(oddata$A3))
print(segr)

backtrace_r backtracing dpseg segment break-points

Description

Backtracing segment borders from the imax vector of a dpseg recursion. This function is imple-
mented more efficiently in Rcpp; the R code is kept for documentation, benchmarking and devel-
opment.

Usage

backtrace_r(imax, jumps = 0)

Arguments

imax integer vector of segment borders as returned by dpseg recursion functions

jumps allwo discontinuous jumps: move 1 index position back, only for Si−1+score(i, j)

Value

an integer vector of segment ends

4 dpseg

dpseg dpseg : linear segmentation by dynamic programming

Description

dpseg splits a curve (x,y data) into linear segments by a straight forward dynamic programming
recursion:

Sj = max(Si−jumps + score(i, j)− P)

where score is a measure of the goodnes of the fit of a linear regression (equiv. to lm(y~x)) between
data points i < j. The default scoring function is simply the negative variance of residuals of the
linear regression (see arguments type and scoref). P is a break-point penality that implicitly
regulates the number of segments (higher P: longer segments), and jumps==1 allows for disjoint
segments. The arguments minl and maxl specify minimal (i ≤ j − minl) and maximal (i ≥
j − maxl) segment lengths, which allows to significantly decrease memory usage when expected
segment lengths are known.

Usage

dpseg(
x,
y,
maxl,
jumps = FALSE,
P = 0,
minl = 3,
S0 = 1,
type = "var",
scoref,
verb = 1,
move,
store.values = TRUE,
store.matrix = FALSE,
add.lm = FALSE,
recursion,
backtrace,
...

)

Arguments

x x-values, generated as 1:length(y) if missing and not used if y is a scoring
function matrix,

y y-values, or a pre-calculated scoring function matrix SCRi,j (eg. from a pre-
vious run of dpseg). See section "Value" below for details on the structure
SCRi,j .

maxl maximal segment length, i ≥ j −maxl

dpseg 5

jumps allow for jumps between segments, if TRUE segment ends are 1 index left of the
segment starts

P break-point penalty, increase to get longer segments with lower scores (eg. higher
residual variance)

minl minimal segment length, i ≤ j −minl

S0 initialization of S0, choose high enough to avoid length 1 cutoffs at start

type type of scoring function: available are "var" for "variance of residuals", "cor" for
Pearson correlation, or "r2" for r-squared; see the package vignette("dpseg")
for details.

scoref alternative scoring function

verb print progress messages

move logical indicating whether move is required in backtracing, required for the al-
ternative recursion Si + score(i+ 1, j)

store.values store scoring values (linear regression results)

store.matrix store the fitscore matrix

add.lm add a linear fit using R base lm for final segments; may save memory/speed if
store.values==FALSE

recursion internal recursion function to be used for segmentation; used for debugging,
benchmarking and development, and required for putative novel scoring func-
tions scoref

backtrace internal function to be used for back-tracing; used for debugging, benchmarking
and development, and may be required to test novel scoring functions scoref
and/or recursion

... further arguments to recursion

Details

See the vignette("dpseg") for the theory and details on the choice of scoring functions and
selection of the penalty parameter P.

Value

Returns a list object of class dpseg (with print.dpseg plot.dpseg and predict.dpseg meth-
ods). The main result of the algorithm is a table (data.frame) of predicted segments in list object
segments. The original data, run parameters and (optionally) additional data calculated and used
by the algorithm are also returned.

segments: main result table: a data.frame that lists the start and end x-values of the segments
(columns ‘x1‘ and ‘x1‘), the start and end indices (i,j) in the data vectors (columns ‘start‘ and
‘end‘), and the linear regression coefficients and goodness-of-fit measures for the segments in
columns: ‘intercept‘, ‘slope‘, ‘r2‘ (r-squared), and ‘var‘ (variance of the residuals). If dpseg
was called with a pre-calculated scoring matrix, the table only contains start and end indices
i,j. If option add.lm=TRUE or the result object was sent through function addLm the table
additionally contains results from R’s lm, indicated by an ".lm" suffix.

S: results of the recursion, ie. Sj in above equation.

6 dpseg_old

imax: vector j = 1, . . . , n, storing the imax that yielded Sj , ie., the sole input for the backtracing
function.

values: linear regression coefficients and measures for the segment ending at j and starting at
imax(j). Only present if store.valus=TRUE.

SCR: scoring function matrix SCRi,j = score(i, j) where positions j are the columns and i the
rows; a banded matrix with non-NA values between i ≤ j − minl and i ≥ j − maxl.
Note, that this matrix can be re-used in subsequent calls as dpseg(y=previous$SCR) which
runs much faster and allows to efficiently scan for alternative parameters. Only present if
store.matrix=TRUE.

fits: result objects from lm. Only present if add.lm=TRUE.

traceback: result of the call to the backtracing function: ends of the segments.

xy: original x/y data (xy.coords).

removed: index of NA/Inf values that were removed before running the alorithm.

parameters: used parameters P, jumps, maxl and minl.

Dependencies

The package strictly depends only on RcppEigen. All other dependencies are usually present in a
basic installation (stats, graphics, grDevices).

Author(s)

Rainer Machne <machne@hhu.de>, Peter F. Stadler <studla@bioinf.uni-leipzig.de>

Examples

calculate linear segments in semi-log bacterial growth data
NOTE: library loads bacterial growth curve data as data.frame oddata
segs <- dpseg(x=oddata$Time, y=log(oddata$A3), minl=5, P=0.0001, verb=1)

inspect resulting segments
print(segs)

plot results (also see the movie method)
plot(segs)

predict method
plot(predict(segs), type="l")

dpseg_old inefficient dpseg implementation

dpseg_old 7

Description

See dpseg for a current version of this algorithm. Note: this was a first test implementation of
the linear piecewise segmentation by a dynamic programming approach. This implementation is
very slow. A much more efficient version, dpseg, calculates the variance of residuals of a linear re-
gression incrementally while looping through the recursion, and is implemented in Rcpp. See there
for details on the algorithm. This version is kept alive, since it is a more general implementation,
allowing to test different regression and scoring functions by command-line arguments.

Usage

dpseg_old(
x,
y,
minl,
maxl = length(x),
P = 0,
EPS,
store.matrix = FALSE,
fitscoref = fitscore,
fitf = linregf,
scoref = varscore,
verb = 0

)

Arguments

x x-values

y y-values

minl minimal segment length

maxl maximal segment length

P jump penalty, increase to get fewer segments # @inheritParams score

EPS a pre-calculated fitscore matrix, will be generated if missing

store.matrix store the fitscore matrix

fitscoref the heavy-load loop that fills the fitscore matrix using fitf and scoref

fitf fit function, used in the scoring function scoref; (TODO: currently expecting
a fit object that provides intercept and slope as coef(obj)[1:2] only for the
result table)

scoref function to calculate a score from the passed fit function

verb print progress messages

Details

The recursion calculates Sj = max(Si+fitscore(i+1, j))−P , where the fitscore is the variance
of the residuals of a linear regression (lm(y~x)) between xi+1 to xj , P is a jump penality that
implicitly regulates the number of segments, minl and maxl are minimal and maximal lengths of
segments. Uses RcppEigen:fastLm for linear regression.

8 estimateP

Value

Returns a list of result structures very similar to the list of class "dpseg" returned by function dpseg,
except for the name of the scoring function matrix, here: EPS. See ?dpseg for detailed information
on these structures.

Examples

NOTE: not run because it's too slow for R CMD check --as-cran
calculate linear segments in semi-log bacterial growth data
NOTE: library loads bacterial growth curve data as data.frame oddata
Sj <- dpseg_old(x=oddata$Time, y=log(oddata$A3), minl=5, P=0.0001, verb=1)

inspect resulting segments
print(Sj)

plot results
plot(Sj, delog=TRUE, log="y")

NOTE: predict method & movie function do not work for dpseg_old

estimateP Estimate a starting value for penalty P.

Description

The break-point penalty P in a dpseg recursion, should be in the range of expected values of the
scoring function. To find a good initial estimate for P when using the default scoring fuction (see
dpseg), the data is smoothed by smooth.spline and the variance of residuals reported.

Usage

estimateP(x, y, plot = FALSE, ...)

Arguments

x x-values

y y-values

plot plot the smooth.spline

... parameters for smooth.spline

Value

Returns a double, variance of residuals of a spline fit (var(smooth.spline(x,y, ...)$y -y))

movie 9

Examples

x <- oddata$Time
y <- log(oddata$A5)
p <- estimateP(x=x, y=y, plot=TRUE)
plot(dpseg(x=x, y=y, jumps=TRUE, P=round(p,3)))

movie Visualizes the dpseg segmentation recursion as a movie.

Description

Generates a movie of the calculation steps j = 1, . . . , n while looping through the recursion Sj .
Plots are sent to the active plot device or, if path is specified, to a video file <path>/<file.name>.<format>
via a system call to Image Magick’s convert. Saving to a file likely only works on Linux systems
with Image Magick installed and convert available in the $PATH environment variable. format are
formats available for convert, eg. format="gif" or format="mpeg". See the vignette("dpseg")
for details on the plotted data.

Usage

movie(
dpseg,
fix.ylim = TRUE,
frames,
delay = 0.1,
repeat.last = 5,
ylab = "scoring function",
ylab2 = "y",
xlab = "x",
path,
file.name = "dpseg_movie",
format = "gif",
res = 200,
...

)

Arguments

dpseg result object of class dpseg returned by function dpseg

fix.ylim fix the y-axis of the score function

frames x range to show as movie frames

delay delay between frames in seconds, between x11 plot updates or as argument
-delay to the system call to Image Magick’s convert

repeat.last repeat list frame this many times

ylab left y-axis label, for the scoring funtion

10 oddata

ylab2 right y-axis label, for the original data

xlab x-axis label

path path where both temporary jpeg files and the final movie file will be generated.
If not specified the indidividual frames will be plotted to the active plot device.

file.name name of the generated video file <path>/<file.name>.<format>

format format of the video, all outputs that image magick’s convert can generate, e.g.
"mpg" or "gif"

res resolution of the generated movie (pixels per inch)

... arguments passed to default plot function

Examples

NOTE: requires that dpseg is run with store.matrix=TRUE
segs <- dpseg(x=oddata$Time, y=log(oddata$A3), minl=5, P=0.0001, store.matrix=TRUE)

View the algorithm in action:
movie(segs, delay=0)

NOTE: if Image Magick's convert is installed you can set the path
option to save the movie as <path>/<file.name>.<format>, where format
can be "gif", "mpeg" or else, depending on the Image Magick installation.

oddata Escherichia coli growth curves.

Description

Optical density (OD) data from a 96-well microtiter plate experiment, growing Escherichia coli
cells in M9 medium in a BMG Optima platereader.

Usage

oddata

Format

A data frame with the measurement time in column 1 and bacterial growth data (or blanks) in
2:ncol(oddata). Column names correspond to the well on the microtiter plate.

Source

Tom Rohr, Anna Behle, Rainer Machne, HHU Duesseldorf, 2018

plot.dpseg 11

plot.dpseg Plot method for a dpseg segmentation model.

Description

Plot method for a dpseg segmentation model.

Usage

S3 method for class 'dpseg'
plot(x, delog = FALSE, col, main, res = 10, vlines = TRUE, ...)

Arguments

x result object returned by function dpseg

delog plot exp(y)

col optional color vector for segments

main plot title, dpseg parameters will be plotted if missing

res x-resolution factor for the predicted model line, the new coordinates xout are
equispaced at res*length(x) points.

vlines plot vertical lines at the breakpoints.

... arguments passed to default plot function

Value

Silently returns the x$segments table , with color values added if they were missing in the input.

predict.dpseg Predict method for ‘dpseg‘ segmentations

Description

Predicted values based on a data segmentation model from dpseg.

Usage

S3 method for class 'dpseg'
predict(object, xout, ...)

Arguments

object result object returned by function dpseg

xout new x-values at which to predict ŷ

... not used

12 scanP

Value

Returns predicted linear segments as x,y coordinates (grDevices::xy.coords) at xout.

Examples

x <- oddata$Time
y <- log(oddata$A5)
segs <- dpseg(x=x, y=y, P=0.0001)

predict method
plot(x=x, y=y, pch=19, cex=0.5)
lines(predict(segs), col=2, lwd=2)

print.dpseg Print method for linear segmentation result from dpseg.

Description

Prints the main result table x$segments, segment coordinates and indices, and parameters from the
recursion. See dpseg for details.

Usage

S3 method for class 'dpseg'
print(x, n = 6, ...)

Arguments

x result object returned by function dpseg

n print maximally n segments (argument to print.data.frame)

... further arguments to print.data.frame

scanP Scan over different penalty P values

Description

Runs the dpseg recursion for different values of the penalty parameter P and returns a matrix with
the used P values, the resulting number of segments and (optionally) the median of segment variance
of residuals.

Usage

scanP(x, y, P, var = TRUE, use.matrix = TRUE, plot = TRUE, verb = 1, ...)

sgtable 13

Arguments

x x-values

y y-values

P vector of penalties P to scan

var add the median of the variances of residuals of all segments to output (save time
by var=FALSE)

use.matrix use the stored scoring function matrix for more efficient scans; set this to FALSE
if you run into memory problems

plot plot results

verb print progress messages

... parameters for dpseg (except P)

Value

Returns a matrix with the penalties P in the first column, the number of segments in the second
column and the median of variances in the third column.

Examples

x <- oddata$Time
y <- log(oddata$A5)
par(mai=c(par("mai")[1:3], par("mai")[2])) # to show right axis
sp <- scanP(x=x, y=y, P=seq(-.01,.1,length.out=50), plot=TRUE)

sgtable construct a segment table

Description

Constructs a segment table from segment ends (imax) returned by dpseg backtracing functions
backtrace_r and backtrace_c. Correct segment break-points require to know whether segment
recursion was run with the jumps option of dpseg. In joint segments (jumps=FALSE) segment
borders are part of both left and right segments.

Usage

sgtable(ends, starts, jumps = TRUE)

Arguments

ends integer vector of segment ends

starts integer vector of segment starts

jumps same parameter as passed to recursion function, allowing for discontinous jumps
(TRUE) or enforcing joint segments (FALSE)

14 sgtable

Value

a table with segment start and end columns

Index

∗ datasets
oddata, 10

addLm, 2, 5

backtrace_r, 3, 13

dpseg, 2, 3, 4, 6–9, 11–13
dpseg_old, 6

estimateP, 8

lm, 2

movie, 9

oddata, 10

plot, 10, 11
plot.dpseg, 11
predict.dpseg, 11
print.data.frame, 12
print.dpseg, 12

RcppEigen:fastLm, 7

scanP, 12
sgtable, 13
smooth.spline, 8

15

	addLm
	backtrace_r
	dpseg
	dpseg_old
	estimateP
	movie
	oddata
	plot.dpseg
	predict.dpseg
	print.dpseg
	scanP
	sgtable
	Index

